Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 3090-3111, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306388

RESUMO

The inhibition of ataxia-telangiectasia mutated (ATM) has been shown to chemo- and radio-sensitize human glioma cells in vitro and therefore might provide an exciting new paradigm in the treatment of glioblastoma multiforme (GBM). The effective treatment of GBM will likely require a compound with the potential to efficiently cross the blood-brain barrier (BBB). Starting from clinical candidate AZD0156, 4, we investigated the imidazoquinolin-2-one scaffold with the goal of improving likely CNS exposure in humans. Strategies aimed at reducing hydrogen bonding, basicity, and flexibility of the molecule were explored alongside modulating lipophilicity. These studies identified compound 24 (AZD1390) as an exceptionally potent and selective inhibitor of ATM with a good preclinical pharmacokinetic profile. 24 showed an absence of human transporter efflux in MDCKII-MDR1-BCRP studies (efflux ratio <2), significant BBB penetrance in nonhuman primate PET studies (Kp,uu 0.33) and was deemed suitable for development as a clinical candidate to explore the radiosensitizing effects of ATM in intracranial malignancies.


Assuntos
Ataxia Telangiectasia , Glioblastoma , Piridinas , Quinolonas , Animais , Humanos , Barreira Hematoencefálica/metabolismo , Ataxia Telangiectasia/tratamento farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Glioblastoma/tratamento farmacológico
2.
J Pharm Sci ; 112(9): 2524-2531, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37105438

RESUMO

Identity testing is a critical part in the development of a therapeutic synthetic oligonucleotide. Tandem Mass Spectrometry (MS/MS) is commonly used for the analysis of oligonucleotides to obtain structural and sequence information, however there are challenges resulting from chemical modifications introduced to improve their pharmacokinetics and stability. For these structurally complex oligonucleotides, Nuclear Magnetic Resonance (NMR) Spectroscopy has found limited use for characterisation and identity testing, as only partial NMR resonance assignment for oligonucleotides is achieved without isotopic labelling methodologies. Regardless of the choice of method used for oligonucleotide analysis, the specificity is of critical importance. In this work, in-source dissociation mass spectrometry and proton (1H) and carbon (13C) NMR at high temperature were used to analyse danvatirsen, a 16 nucleotide phosphorothioate antisense oligonucleotide, and its closely related switch sequences. Both approaches have shown specificity to distinguish danvatirsen from these similar sequences.


Assuntos
Oligonucleotídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Oligonucleotídeos/química , Espectroscopia de Ressonância Magnética
3.
Nucleic Acid Ther ; 30(5): 249-264, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32857010

RESUMO

A risk-based approach for routine identity testing of therapeutic oligonucleotide drug substances and drug products is described. Risk analysis of solid-phase oligonucleotide synthesis indicates that intact mass measurement is a powerful technique for confirming synthesis of the intended oligonucleotide. Further risk assessment suggests that the addition of a second, sequence-sensitive identity test, which relies on a comparison of some property of the sample to a reference standard of proven identity, results in a sufficient test of identity for most oligonucleotide drug substances and products. Alternative strategies for drug product identity testing are presented. The analysis creates a common way to communicate risk and should result in a harmonized approach to identity testing that avoids the unnecessary analytical burden associated with routine de novo sequencing, without compromising quality or patient safety.


Assuntos
Oligonucleotídeos/síntese química , Oligonucleotídeos/uso terapêutico , Preparações Farmacêuticas/química , Humanos , Oligonucleotídeos/química , Medição de Risco , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...